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Abstract

■ Representing object position is one of themost critical functions
of the visual system, but this task is not as simple as reading off an
objectʼs retinal coordinates. A rich body of literature has demon-
strated that the position in which we perceive an object depends
not only on retinotopy but also on factors such as attention, eye
movements, object and scene motion, and frames of reference, to
name a few. Despite the distinction between perceived and retinal
position, strikingly little is known about how or where perceived po-
sition is represented in the brain. In the present study, we disso-
ciated retinal and perceived object position to test the relative
precision of retina-centered versus percept-centered position cod-
ing in a number of independently defined visual areas. In an fMRI
experiment, subjects performed a five-alternative forced-choice po-

sition discrimination task; our analysis focused on the trials in which
subjects misperceived the positions of the stimuli. Using a multi-
variate pattern analysis to track the coupling of the BOLD response
with incremental changes in physical and perceived position, we
found that activity in higher level areas—middle temporal complex,
fusiform face area, parahippocampal place area, lateral occipital cor-
tex, and posterior fusiform gyrus—more precisely reflected the
reported positions than the physical positions of the stimuli. In early
visual areas, this preferential codingof perceivedpositionwas absent
or reversed. Our results demonstrate a new kind of spatial topogra-
phy present in higher level visual areas in which an objectʼs position
is encoded according to its perceived rather than retinal location.
We term such percept-centered encoding “perceptotopy”. ■

INTRODUCTION

Although retinotopy has been extensively studied through-
out the visual cortex and is considered one of the funda-
mental principles by which visual areas are organized,
there are many circumstances in which the perceived po-
sition of an object differs markedly from its retinal posi-
tion. Object motion (Whitney, 2002; De Valois & De Valois,
1991; Ramachandran & Anstis, 1990), eye movements (Ross,
Morrone, Goldberg, & Burr, 2001; Cai, Pouget, Schlag-Rey, &
Schlag, 1997; Ross, Morrone, & Burr, 1997), attention shifts
(Kerzel, 2003; Suzuki & Cavanagh, 1997), changes in frame
of reference (Bridgeman, Peery, & Anand, 1997; Roelofs,
1935), and adaptation (Whitaker, McGraw, & Levi, 1997)
are among the many factors that can lead to disparate phys-
ical and perceived position information. These examples
speak to the fact that reading off an objectʼs retinal co-
ordinates is only a single step in the complex task of ob-
ject localization; perceived and physical object position
are often dissociated. Given this, we might well expect that
some visual areas encode position in percept-based rather
than retina-based coordinates.
Where might percept-centered position coding exist in

the visual system? Retinotopy is well characterized in stri-
ate and early extrastriate visual cortex, but the nature of
spatial coding in higher level object-, scene-, and motion-
processing areas is still unclear. Activity in the fusiform

face area (FFA) and parahippocampal place area (PPA)
exhibits relatively weak position selectivity (Schwarzlose,
Swisher, Dang, & Kanwisher, 2008; Hemond, Kanwisher,
& Op de Beeck, 2007; MacEvoy & Epstein, 2007), but these
areas show biases in response amplitude for centrally ver-
sus peripherally presented stimuli (Levy, Hasson, Avidan,
Hendler, & Malach, 2001). Retinotopic maps have been
found in human lateral occipital (LO) cortex (Larsson &
Heeger, 2006), but there is also evidence that the pre-
dominant organization in LO cortex is head or body cen-
tered rather than retina centered (McKyton & Zohary,
2007). Similarly, although position coding in the motion-
selective middle temporal (MT) region has previously been
reported as retinotopic (Huk, Dougherty, & Heeger, 2002),
a recent study that manipulated gaze direction relative to
a motion stimulus found that responses in MT were more
consistent with a spatiotopic reference frame (dʼAvossa
et al., 2007; cf. Gardner, Merriam, Movshon, & Heeger,
2008). These conflicting results may be reconciled if the
aforementioned areas are integrating retinal and extraretinal
sources of information to construct a representation of per-
ceived position—perceived position may or may not match
retinal position on a given trial or for a given experimental
paradigm.

In the current study, we tested thehypothesis that higher
level visual areas preferentially represent perceived rather
than physical object position. We measured the relative
precision of perceived versus physical position coding
in five functionally localized higher level visual areas: LOUniversity of California, Davis
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cortex, posterior fusiform gyrus (pFs), FFA, PPA, and MT+.
Using subjectsʼ mislocalizations to dissociate physical and
perceived stimulus position, we found that changes in the
patterns of activity in each of these higher level areas were
more tightly coupled with changes in perceived position
than in physical position. Our results reveal the existence
of a percept-centered coordinate frame for position cod-
ing in higher level visual areas.

METHODS

Eight subjects with normal or corrected-to-normal vision
participated in this study (six participated exclusively in
the main experiment, one participated in both the main
experiment and the eye tracking control, and one partic-
ipated exclusively in the eye tracking control). Each sub-
ject provided informed consent before participation, and
all scanning procedures were approved by the University
of California, Davis, institutional review board.

Functional Localizers: Stimuli and Analysis

In separate functional runs for each subject, we localized
visual areas MT+, FFA, PPA, LO cortex, and pFs as well as
V1, V2, V3, V3a, VP, and V4. To localize and to demarcate
areas V1 through V4, we used flickering wedge stimuli
(“bow tie” patterns; Sereno et al., 1995). Bow ties con-
sisted of counterphase flickering (7.5 Hz) radial sine wave
patterns of 11.79° radius, subtending an arc of 8.16°. There
were three conditions in these bow tie runs; in two condi-
tions, the bow ties were centered on the vertical or hori-
zontal meridians, and the third condition was a fixation
baseline in which only the fixation point was present. Con-
ditions were randomized in thirty-six 10-sec blocks. In all
conditions, subjects were instructed to fixate while per-
forming a counting task at the fixation point. Small (0.98°)
radial and circular gratings appeared around the fixation
point at random times during each 10-sec block, and one
pattern was always presented more often than the other.
At the end of each block, a white annulus (0.98° diameter)
appeared around the fixation point, prompting subjects to
make a response indicating which pattern had occurred
most often.

To define the boundaries of areas V1 through V4, we
traced the mirror reversals in the cortical representations
of the horizontal and vertical meridians, as identified by
the horizontal and vertical bow tie stimuli (Sereno et al.,
1995). To do this, we constructed a general linear model
(GLM) contrast between the horizontal and the vertical
bow tie stimuli. This contrast yielded a striated map of ac-
tivity across the early visual areas, revealing their retino-
topic organization. We separately overlaid each subjectʼs
contrast map on his or her inflated brain and traced the
boundaries of areas V1 through V4 by following the hori-
zontal and the vertical meridians.

To define ROIs for areas LO cortex and pFs, we con-
ducted separate localizer scans using methods similar to

those used by Grill-Spector et al. (1998). Stimuli in these
scans consisted of intact and scrambled objects (Supple-
mentary Figure 1a). Subjects performed a one-back match-
ing task, indicating whether the current object matched
the previously presented object, while maintaining fixation
throughout each run. Intact objects were gray scaled and
centered within 4.1° × 5.7° rectangles. Scrambled objects
were created by dividing each of the object images into a
grid of 875 squares and shuffling the locations of these
squares within the rectangle. Each run consisted of ten
30-sec stimulation blocks (five with intact objects and five
with scrambled objects), interleaved with five 20-sec fixa-
tion periods. Within each stimulation block, 40 stimuli
were presented (1.33 Hz). Each subject participated in
two runs, except for FF, who participated in one run.
To localize areas PPA andFFA,weused a one-backmatch-

ing task and block design similar to those that we used to
localize LO cortex and pFs (Epstein, Harris, Stanley, &
Kanwisher, 1999; Kanwisher, McDermott, & Chun, 1997).
Within each run, face and house stimuli (Supplementary
Figure 1b and c) were presented in 10 alternating 30-sec
blocks, interleaved with five 20-sec fixation periods; within
each block, 40 stimuli were presented. As with intact ob-
jects, the face and the house stimuli were gray scaled and
centered within 4.1° × 5.7° rectangles. Each subject par-
ticipated in two runs.
ROIs for LO cortex, pFs, PPA, and FFA were defined

by conducting GLM analyses on data collected from the
localizer runs. For all subjects, each area was separately
defined as the region with the strongest contrast in ac-
tivations when the subject viewed intact objects versus
scrambled objects (LO cortex and pFs), houses versus
faces (PPA), or faces versus houses (FFA). To select ROIs
for six of our subjects, we set the threshold at t > 4.9,
p < .05, Bonferroni corrected. One subject had a weak
BOLD response, so the threshold was reduced to t >
3.6, p < .05. The inclusion or exclusion of this subjectʼs
data did not significantly influence any results in this
study. Several subregions of the LO cortex have been
identified; however, these have not been clearly estab-
lished and universally agreed upon (McKyton & Zohary,
2007; Larsson & Heeger, 2006; Grill-Spector et al., 1999).
The Talairach coordinates we found corresponded most
with studies that identified these subregions as LO and
pFs; therefore, we chose to retain this nomenclature in
our study (Altmann, Deubelius, & Kourtzi, 2004; Avidan,
Hasson, Hendler, Zohary, & Malach, 2002; Grill-Spector
et al., 1999).
Each subject also participated in separate runs to func-

tionally localize area hMT+ (the human homologue of
monkey areas MT and MST, commonly referred to as
MT+). The MT+ localizer runs consisted of three condi-
tions: Gabors with inward motion (drifting toward fixa-
tion), Gabors with outward motion (drifting away from
fixation), and a fixation baseline condition in which only
the fixation point was present. The Gabors were situated
as in the main experiment: One Gabor was presented in
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each visual quadrant at an eccentricity of 9° from fixation.
The Gabors had a spatial frequency of 0.38° and drifted
inward or outward at 2.5 Hz for the duration of each
block. The three stimulus conditions were randomized
in eighteen 10-sec blocks, and during these blocks, sub-
jects performed a task at the fixation point identical to
the one described for the bow tie localizer above. Subjects
participated in a minimum of five MT+ localizer runs.
MT+ ROIs were functionally defined for each subject by

contrasting moving versus baseline responses in a GLM
applied to the localizer runs. The threshold for inclusion
in the ROI was t > ±6.3, p < .001, Bonferroni corrected.
Two subjects had weak responses to all stimuli, so the
threshold for inclusion was dropped to t > ±3, p <
.003. The inclusion or exclusion of these subjects did
not significantly change the results. The Talairach coordi-
nates for the functionally defined MT+ ROIs were consis-
tent with those estimated in previous studies (Dukelow
et al., 2001; Dumoulin et al., 2000; Kourtzi & Kanwisher,
2000; Tootell et al., 1995; Watson et al., 1993). See Supple-
mentary Table 1 for the averaged Talairach coordinates
of LO, pFs, PPA, FFA, and MT+ across all seven subjects
(Talairach & Tournoux, 1988).

Main Experiment Stimuli

Stimuli consisted of four flickering Gabor patterns (sinu-
soidal luminance modulations within Gaussian contrast
envelopes; Figure 1A). The Gaussian contrast envelope
of the Gabors was defined as Lðx; yÞ ¼ A$ e

−r2

ðσMÞ2 , where A
is the peak contrast amplitude, r is the distance of (x,y)
from the center of the Gaussian, σ is the standard devia-
tion, and M is the maximum radius. Gabors had a spatial
frequency of 0.38 cycles/deg and flickered in counterphase
at 7.5 Hz; the phase of each Gabor was independently ran-
domized on each trial. One Gabor was positioned in each
visual quadrant, with the peak contrast (87% Michelson)
always located 9.04° from a central fixation point. We used
Gabors rather than the optimal stimulus for each ROI to
avoid generating activity specific to one particular area.
In addition, the physical characteristics of the Gabor stim-
uli (e.g., position, contrast, and spatial frequency) are eas-
ily quantified and can be independently manipulated; the
features of objects, faces, or houses (e.g., surface proper-
ties, contours, and asymmetries) are difficult to control.
In each of five experimental conditions, the centroids of

all four Gabors were set to one of five possible eccentrici-
ties. Gabor centroids were manipulated by applying a skew
to the Gaussian contrast envelopes (Whitaker, McGraw,
Pacey, & Barrett, 1996). A central condition had no skew
applied to the contrast envelope; its size (standard devia-
tion) was 1.66° and its centroid was at 9.039° eccentricity.
In two more foveal conditions, the contrast envelopes
were skewed by 0.19° and 0.38° toward fixation, and in
twomore eccentric conditions the contrast envelopes were
skewed by 0.19° and 0.38° away from fixation. The Gabors
skewed in this way had centroids at 8.430°, 8.735°, 9.039°,

9.343°, and 9.647° from fixation on the basis of the equa-
tion ðσ2−σ1Þ

ffiffi
2
π

q
(Whitaker & McGraw, 1998; Whitaker

et al., 1996). Eccentricities were manipulated in this way
rather than by shifting the peak contrast because skewing
the contrast envelope is a better method of isolating the
perceptual mechanisms that perform centroid analysis
(Whitaker et al., 1996), and skewing the Gabor envelope
dissociates peak contrast from centroid information. In a
previous study, we showed that skewing a Gaborʼs Gaussian
envelope versus shifting its peak contrast are both equally
valid means of altering the retinotopic representation of
the pattern (Whitney & Bressler, 2007). A sixth condition
consisted of a fixation baseline in which only the fixation
point, a 0.39° diameter bulls eye, was present.

In a control analysis,wepresented faces insteadofGabors
(Supplementary Figure 5). The stimuli consisted of four
faces, situated symmetrically about the fixation point in
the four visual quadrants, just as with the Gabor stimuli.
The faces were drawn from the PICS database (University
of Stirling Psychology Department; http://pics.psych.stir.
ac.uk/ ). Each face was enveloped in a Gaussian contrast
window to define its centroid and standardize its size. The
Gaussian contrast profiles had a standard deviation of 1.66°;
to yield five position conditions, the envelope was skewed
by −0.38°, −0.19°, 0°, 0.19°, or 0.38°, and applied to the
faces, yielding centroids at 8.430°, 8.735°, 9.039°, 9.343°,
and 9.647° from fixation, just as with the Gabor stimuli.
The identity of the four faces updated at 7.5Hz, and on each
update, the next identity was randomly drawn from a pool
of 20 possible identities. In all other respects, the experi-
mental parameters for the face position discrimination ex-
periment were the same as those for the main experiment.

Experimental Design and Task

In each functional imaging run, the six stimulus conditions
were randomly interleaved in thirty-six 10-sec blocks (each
condition was presented six times; runs were 360 sec in
length). A blocked design was used to maximize signal to
noise ratio in the resulting maps of BOLD response. Each
subject participated in five functional runs.

Subjects maintained fixation at a central point through-
out the entire experiment. On each trial, subjects attended
to the locations of the surroundingGabor stimuli and judged
the position (centroid eccentricity) of the Gabors. This task
was a five-alternative forced-choice (5AFC) classification task
(MacMillan & Creelman, 2004), with one Gabor position
assigned to each of five buttons on a button box (method
of single stimuli; McKee, Silverman, & Nakayama, 1986;
Volkmann, 1932). At the end of each 10-sec trial, a white an-
nulus (0.98° diameter) appeared around the fixation point,
prompting subjects to respond by pressing the button asso-
ciated with the position in which the Gabors appeared.

To prevent subjects from making the position judg-
ments on the stimuli quickly and then attending elsewhere
for the remainder of each trial, subjects performed a
secondary sustained attention task at the locations of the
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Gabors. During the first 8 sec of each 10-sec block, at a
randomly chosen time, a patterned circle was briefly
superimposed on one of the four Gabors (chosen at ran-
dom) for 500 msec. The patterned circle (either a circular
or a radial pattern) was always presented at an eccentricity
of 9.04°. A second patterned circle was presented again in
the same manner during the last 2 sec of each 10-sec
block, and subjects responded to indicate whether the
first patterned circle presented matched the second circle
(patterns matched with a probability of 50%). Figure 1D

depicts an example trial. In this way, we ensured that
subjects maintained attention at the locations of the sur-
rounding stimuli for the entire 10 sec of each trial. In addi-
tion to the functional runs described above, additional
runs were interleaved in which subjects performed a task
at the fixation point and did not perform the 5AFC position
discrimination task. These runs were part of a separate
analysis and are not included in the present results.
We also ran a subset of the subjects from the main ex-

periment in an event-related experiment in which stimula-

Figure 1. Main experimental
stimuli and behavioral results.
(A) On each trial, Gabor stimuli
appeared at one of five possible
eccentricity conditions, ranging
from 8.43° to 9.65° from a
central fixation point. The range
of eccentricities pictured is
exaggerated for visualization
purposes. The Gabors flickered
in counterphase at 7.5 Hz and
were present for the duration of
each 10 second trial. A white
annulus around the fixation
point during the last 2 sec of
each trial cued subjects to
respond, indicating which of the
five conditions was present. In a
sixth baseline condition, only
the fixation point was present
for 10 sec. The behavioral and
the correlation analyses refer to
the separations between the
five stimulus conditions—these
are indicated below the stimuli
(in degrees visual angle). (B)
Subjectsʼ sensitivity (in d0 units,
see MacMillan & Creelman,
2004) is plotted against stimulus
separation. The positive trend
in this plot indicates that the
five stimulus positions sampled
the dynamic range of subjectsʼ
discrimination sensitivity.
The overall hit rate was 58%.
(C) Histogram of the response
errors for all trials in the main
experiment, binned by the
distance between the correct
and the actual responses. For
example, if, on a given trial, the
Gabors were presented in
position 4 (9.34° from fixation)
but the subject responded with
position 3, that trial is binned in
response error (−1). The trials
in solid gray at response error 0
are the trials in which subjects
responded correctly; we
exclusively used the missed trials (dotted bars; 42% of total trials), in which perceived and physical positions were dissociated in the analysis
of the main experiment. (D) An example trial. The Gabor stimuli were present for the duration of each 10-sec trial. At a random time during the
first 8 sec of each trial, a small texture (either a radial or a concentric grating) appeared for 500 msec at 9.04° from fixation in a random
quadrant. During the last 2 sec of the trial, a second texture appeared at the same eccentricity in a random quadrant; the type of texture
matched the first on 50% of the trials. At the end of the trial, subjects gave two responses, indicating the positions of the Gabors (5AFC) and
whether the two presented textures were the same (2AFC).
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tion intervals were only 2 sec long. We found very similar
results to those from the main experiment, but the signal
strength in the BOLD response was substantially reduced.
Because the power of our pattern analysis depends on
signal-to-noise ratio in the BOLD response (Fischer &
Whitney, 2009a), our main experimentʼs blocked design
was aimed at achieving an optimal compromise between
the psychological and the analytical demands of the study.

fMRI Data Acquisition and Preprocessing

Imaging was conducted at the UC Davis Imaging Research
Center on a 3-T Siemens TRIO scanner. Each subjectʼs
head was placed in a Siemens eight-channel phased-
array head coil, and padding was placed on the side and
forehead of the subject to restrict movement. Using a Dig-
ital Projection Mercury 5000HD projector, stimuli were
back projected at 75 Hz onto a semitransparent screen
from outside the bore. Subjects were able to see the
screen and the stimuli via a mirror angled at 45°, located
9.5 cm directly above their eyes. Functional images were
collected with a gradient-recalled echo EPI sequence.
Whole-brain anatomical images were acquired with a high
resolution (1 mm3) Turbo Spin Echo scan. The acquisi-
tion parameters were repetition time = 2000 msec, echo
time = 26 msec, flip angle = 90°, field of view = 22 ×
22 cm2, voxel size = 1.528 × 1.528 × 2.5 mm3, 20 slices
per volume. The imaging volume was centered on the cal-
carine sulcus, covering the occipital lobe.
All preprocessing and GLM analyses were conducted

using Brain Voyager QX (Brain Innovation B.V., Maastricht,
The Netherlands). Preprocessing included linear trend
removal and 3D motion correction on a run-by-run basis.
Before all GLM analyses, corrections for serial correlations
(removal of first-order autocorrelations) were applied. The
images from each functional run were individually aligned
to the subjectʼs respective high-resolution anatomical
image, reducing the effects of head movement between
runs. The anatomical images were then transformed into
Talairach space.

Data Analysis

In the main analysis, we discarded the “hit” trials and ana-
lyzed only the “miss” trials to focus on the subset of the
data in which there was a difference between the physical
and the perceived locations of the stimuli. To measure po-
sition selectivity within each ROI, we first generated a map
of the BOLD response corresponding to each stimulus ec-
centricity condition. We did this separately for each sub-
jectʼs five functional runs in a GLM analysis, using the six
stimulus conditions (five Gabor eccentricities, plus a base-
line condition) as predictors. We separately contrasted
each of the five Gabor eccentricities against the baseline
condition to produce five statisticalmaps (t values, unthresh-
olded) of the BOLD activity unique to the five stimulus ec-
centricities. The subsequent correlation analysis measured

position discrimination by tracking systematic changes in
the patterns of activity in these maps.

To quantify the precision of position discrimination, we
generated a position discrimination plot for each ROI. To
do this, we first computed the correlations between all
possible pairings of activity maps within each ROI. Given
any two of a subjectʼs five maps of BOLD response (corre-
sponding to the five stimulus eccentricities), we computed
the correlation between the maps by pairing the t values
from the two on a voxel-by-voxel basis and computing a
Pearson r for the resulting set of pairs. Figure 2 illustrates
this process for two of the 10 correlations: correlating the
activity from adjacent stimuli generally yielded large r val-
ues (Figure 2A), whereas correlating the activity from more
distant stimuli yielded smaller r values (Figure 2B). We
converted the 10 resulting r values to Fisher z scores so
that they could be linearly compared with each other. This
process yielded 10 z scores for each ROI; to create a posi-
tion discrimination plot, we plotted each of the z scores
against the spatial separation (in degrees visual angle) of
the two stimulus eccentricities from which it was produced
(Figure 2C). Adjacent conditions had centroids separated
by 0.304°; more distant conditions were separated by mul-
tiples of this value (0.609°, 0.912°, and 1.216°). To avoid a
loss of information due to imperfect registration between
runs, we performed this process separately for each run;
thus, each subjectʼs individual position discrimination plot
for a given ROI contained a total of 50 points (Figure 2C
depicts data for a single run). For group analyses, we fit
a regression to all subjectsʼ data taken together. As we
wished to combine data across several subjects to make
inferences about the population at large, we used a ran-
dom effects analysis to account for between-subject vari-
ability (Holmes & Friston, 1998). Our regression model
took the form zijkl = β0 + τi + β1xjk + εijkl, where i in-
dexed the subjects, the pair ( j, k) indexed the 10 stimulus
pairings, and l indexed the run number; τi accounted for
baseline differences between subjects. The goodness of fit
of the group regression (r) for each ROI provided an in-
dex of the precision of position coding there—the stronger
the inverse relationship between the BOLD response cor-
relations and their corresponding stimulus separations,
the more precise the position discrimination (Fischer &
Whitney, 2009a, 2009b; Bressler, Spotswood, & Whitney,
2007). We expressed the precision of position coding for
each plot as the Fisher z-transformed r value for that plot.
Although the slope of a position discrimination plot also
reflects the precision of position coding in the correspond-
ing ROI, r serves as a better indicator of coding precision
because it captures the significance of slope. That is, r re-
flects the steepness of the linear fit and the compactness
of points around the regression line, both of which are im-
portant indicators of the precision of position coding.
Although the addition of an outlier to a plot might increase
the slope of the linear fit, the corresponding r value will
generally decrease, reflecting a greater scatter in the points
around the regression line. The latter is desirable, as in our
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case, greater scatter means less systematic encoding of
stimulus position. We took the Fisher z-transform of each
r value to linearize the scale of the precision estimates so
that they could be directly compared. Table 1 gives the po-
sition discrimination fit estimates for each ROI.

We measured the precision of perceived position cod-
ing in the samemanner, substituting BOLD response maps
corresponding to subjectsʼ responses for the original maps
that reflected physical stimulus position (see Supplemen-
tary Figure 2). We created these perceived position maps
by using the subjective reports provided by each subject
as predictors in the GLM. For example, if on a given trial
a subject indicated that the Gabors were at the most ec-
centric position, then that trial was coded as condition 5
in the GLM, regardless of what was actually presented dur-
ing that trial. We used only “missed” trials in the analysis of
both physical and perceived position coding, so each trial
was coded differently in the two analyses. We performed
the correlation analysis a second time, using each sub-

jectʼs five perceived position maps (corresponding to the
five possible responses) to create perceived position dis-
crimination plots for each ROI. Figure 3A shows the per-
ceived and physical position discrimination plots for area
LO. The two plots differ with respect to the goodness of
their linear fits, hence with respect to the precision of
coding that they reveal for physical and perceived position.
Table 1 gives the precision of perceived position discrimi-
nation for each ROI (group data). To compare the preci-
sion of physical and perceived position coding within each
ROI, we performed a z test:

zdiff ¼
zperceived − zphysicalffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N1 − 3 þ 1

N2 − 3

q ;

where N1 and N2 are the numbers of points in the per-
ceived and physical position discrimination plots, respec-
tively. Note that in Figure 3A, there are fewer total points

Figure 2. Construction of a
position discrimination plot. To
measure position selectivity
within an ROI, we created a
position discrimination plot, in
which the similarity between
the patterns of activity
produced by any two of the five
stimulus conditions is plotted
against the spatial separation
between the stimuli presented
in those conditions. We used
the correlation (Pearsonʼs r)
between two patterns of BOLD
response as the measure of
their similarity. To compute the
correlation between a given pair
of activity maps, we plotted the
intensity values (t units) from
one map against those from the
other map on a voxel-by-voxel
basis and fit a linear regression
to the plot. We transformed the
resulting r value to a Fisher z to
allow for a linear comparison
among multiple correlations
measured in this way. Two such
correlations computed within
V1 for an example subject are
shown in panels A and B.
The plot in panel A corresponds
to two adjacent stimulus
conditions, whereas the plot in
panel B corresponds to the two
furthest separated stimulus
eccentricities. Note that the
correlation in panel A is
substantially stronger than that
in panel B. The fact that retinotopically proximal stimuli produce similar patterns of BOLD response whereas more distant stimuli produce less
similar patterns of BOLD is an indication that activity in the ROI is position selective. To evaluate the precision of position selectivity in the BOLD
response, we plotted each of the 10 correlations against the distance between the stimuli that produced it and fit a linear regression to the resulting
plot (C). Panel C shows the correlations from a single run; we computed the correlations on a run-by-run basis, so a full position discrimination plot
for one subject had fifty total points (see Methods). A significant negative trend in this position discrimination plot indicates that activity in the ROI
is sensitive to the parametric position manipulation (Fischer & Whitney, 2009a, 2009b; Bressler et al., 2007).
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in the plot for perceived position than in the plot for
physical position. It was occasionally not possible to cre-
ate a map for a particular perceived position when no
corresponding trials were available (e.g., on a given
run, a subject may never have made an erroneous “5” re-
sponse). The z test for significance accommodates this
difference in the number of data points (Snedecor &
Cochran, 1980). In subsequent control analyses, we also

conducted the position discrimination analysis using all
trials instead of only the missed trials. In this case, the
plots for physical and perceived position had the same
number of points, and the results showed the same ef-
fects as in the main experiment (see Figure 5 and Supple-
mentary Figure 4).

To test for significant heterogeneity in the nature of
position coding across the visual areas in the dorsal and

Table 1. The Precision of Physical and Perceived Position Coding in Each higher level ROI

Physical Position
Discrimination (−z)

Perceived Position
Discrimination (−z)

z Test
(Percept > Physical) p

LO .231 .487 −2.90 .0038*

pFs .229 .426 −2.23 .0259*

FFA .227 .409 −2.06 .0396*

PPA .217 .424 −2.34 .0195*

MT+ .241 .428 −2.12 .0339*

The precision estimates were computed by fitting a linear regression to the position discrimination plot (grouped data) of each ROI. An r value sig-
nificantly different from zero indicates significant position selectivity within the ROI, and a more negative r implies more precise position coding
(Fischer & Whitney, 2009b). We applied a Fisher z-transform to each precision estimate (r value) for the sake of linear comparison, and we present
the precision estimates in negative z units so that larger values indicate more precise position selectivity. We performed a within-area comparison
of perceived and physical position coding for each ROI using a z test (see Methods). Encoding of perceived position was more precise than that of
physical position in every higher level area we tested. We corrected for multiple comparisons by controlling the false discovery rate to 0.05 (Benjamini &
Hochberg, 1995).

*Significant with FDR correction for multiple comparisons at q = 0.05.

Figure 3. Comparison of
physical and perceived position
discrimination in higher level
visual areas. (A) For each
ROI, we constructed a
position discrimination plot,
as outlined in Figure 2,
separately for physical position
(panel A, left) and perceived
position (panel A, right). These
plots are based on the exact
same trials; the only difference
between the two is whether
the trials were coded according
to their physical position,
or according to subjectsʼ
responses, in the GLM analyses.
The plots in panel A show data
from all subjects; to perform a
group-level analysis, we fit a
linear regression to all subjectsʼ
data taken together and
included a random effect of
subject in the regression model
to account for between-subject
variance (see Methods). The
goodness of fit of the linear
regression captures how tightly
changes in BOLD were coupled
with changes in physical or
perceived stimulus position, hence serving as an index of the precision of position coding. (B) The precision of physical (blue) and perceived (red)
position coding is plotted side by side for each of the five higher level visual areas. Y axis units are in −z, so a taller bar indicates a more
strongly negative correlation on the position discrimination plot. Error bars indicate ±1 SEM. Coding of perceived position was significantly
more precise than coding of physical position in every higher level visual area we tested (see Table 1 for statistics).
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ventral streams, we performed a chi-square test on the
(zperceived − zphysical) scores for each of the two collec-
tions of visual areas. The test is given by χ2 = !((Ni −
3)(zi − z̄ )2), where each zi is a (zperceived − zphysical)
score, z̄ is the weighted mean of all such scores, and Ni

is the number of points on each position discrimination
plot. Subsequently, we tested for a trend in the nature
of position coding across visual areas by computing a
Spearman rank correlation coefficient between the areasʼ

ordering in the visual processing hierarchy and their
bias for physical or perceived position coding, given by
(zperceived − zphysical). We ordered the early visual areas
according to the order in which they are encountered
when moving anteriorly across the cortex from V1 (allow-
ing for duplicate ranks). As a guide, we used Figure 1 from
Tootell, Tsao, and Vanduffel (2003). Thus, the early vi-
sual areas were ranked as follows: V1 − 1, V2 − 2, V3 −
3, VP − 3, V3a − 4, and V4 − 4. All of the higher level

Figure 4. Comparison of
position discrimination in
higher level visual with that in
early visual areas. (A) Precision
of physical (blue) and perceived
(red) position discrimination
is shown for the dorsal
visual areas in ascending
order. Coding preference is
captured in the green bars:
they show the within-area
comparison of physical
versus perceived position
discrimination for each
visual area, obtained by
subtracting the precision
of physical coding from that
of percept coding−(zpercept −
zphysical). Positive values in
the green bars indicate a
preferential coding of perceived
position, whereas negative
values indicate a preferential
coding of retinal position.
Although activity inMT+ reflects
perceived position more
precisely than physical position,
in earlier areas this bias is
diminished or reversed.
A chi-square test revealed
that the nature of position
coding differed significantly
among these dorsal areas
(χ2

dorsal = 20.92, p = .0003).
Panel B shows a comparison
of perceived and physical
position discrimination in
the ventral visual stream.
Here, too, there was significant
variability between areas in
the bias for representing
physical or perceived position
(χ2

ventral = 35.29, p < .0001).
To test for a systematic
progression in the nature of
position coding across areas,
we ranked all 11 areas according
to their locations in the visual
processing stream (see Methods) and computed a Spearman rho rank correlation between the visual area ordering and the position coding
bias −(zpercept − zphysical). The correlation was highly significant (ρ = .80; p = .003). To test this a priori ordering against all other possible rankings
of visual areas, we computed a 25,000-sample bootstrapped distribution of rank correlations, with a randomly drawn ranking of areas for each
sample. The correlation of .80 obtained with the a priori ranking was larger in absolute value than 99.5% of the bootstrapped samples, indicating
that our ranking based on functional anatomy is a good match to the independently measured position discrimination estimates for each area.
The strong correlation between an areaʼs position in the visual processing stream and its bias for representing physical or perceived position reinforces
the idea that the nature of position coding evolves as information progresses through the visual processing hierarchy, becoming
relatively more strongly tied to perception in higher level areas.
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visual areas were assigned the same rank of 5. We com-
puted ρ and its corresponding p value in SPSS 17.0.

Eye Tracking Data Collection and Analysis

For two control subjects, we monitored eye position dur-
ing scanning. Eye position was monitored at 60 Hz using an
ASL Eye-Trac 6 series long-range eye tracker. Eye position
data were collected using EyeTrac6000 software and sub-
sequently analyzed in Matlab 7.1. To determine whether
the subjectsʼ eye movements were correlated with either
the stimuli or their responses, we aligned the eye position
data with the stimulus presentation epochs for each run
(Figure 6B). We then populated a separate list of sampled
eye positions for each of the five physical positions and
each of the five perceived conditions. All of the eye posi-
tions in the physical condition lists were also present in
the perceived condition lists, but many were assigned to
a different condition number because the subject misper-
ceived the stimulus position. For each list, we computed
the mean eye position in the x direction (purple data
points in Figure 6C) and in the y direction (green data

points) as well as the mean squared distance from the fixa-
tion point as a measure of variability. For each subject, sep-
arately for the physical and perceived stimulus positions,
we performed three one-way ANOVAs, testing for signifi-
cant differences in x position, y position, and variability.

RESULTS

In separate imaging runs, we functionally localized visual
areas LO, pFs, FFA, PPA, and MT+ using standard tech-
niques, including the presentation of objects, buildings,
faces, and moving stimuli (Supplementary Figure 1; see
Methods) (Epstein et al., 1999; Grill-Spector et al., 1998;
Kanwisher et al., 1997; Sereno et al., 1995). The Talairach
coordinates of our ROIswere in good agreementwith those
reported in previous studies (Supplementary Table 1;
Yi, Kelley, Marois, & Chun, 2006; Altmann et al., 2004;
Grill-Spector, Knouf, & Kanwisher, 2004; Epstein, Graham,
& Downing, 2003; Avidan et al., 2002; Dumoulin et al.,
2000; Kourtzi & Kanwisher, 2000; Gauthier, Tarr, Anderson,
Skudlarski, & Gore, 1999; Grill-Spector et al., 1999; Watson

Figure 5. Bootstrapped
position discrimination analysis.
To evaluate how uniquely
predictive subjectsʼ responses
were of changes in the pattern
of BOLD response, relative to
other possible codings of the
GLM predictors, we performed
the position discrimination
analysis on a bootstrapped
sample of 1000 sets of trial
labels per subject. To generate
each bootstrapped sample,
we started with the physical
stimulus positions and added
“errors” sampled from the
distribution of errors that
subjects actually made during
the experiment (Figure 1C).
Thus, over the course of all
1000 iterations, the average
errors in the GLM design
matrices matched the
distribution in Figure 1C.
On each iteration, we
obtained a group-wise position
discrimination score (−z ) for
each ROI; the collected position
discrimination scores are
plotted in the gray histograms.
Of particular interest was
whether subjectsʼ responses
performed better at predicting
the pattern of BOLD in higher level areas than did the random errors in the bootstrapped trial labels, which were, on average, equally well correlated
with the physical stimulus positions as subjectsʼ responses were. In fact, in every higher level area, the percept encoding was an extreme outlier
from the bootstrapped distribution (least significant was pFs; −z = 3.41, p < .001), indicating that the precise errors that subjects made were
uniquely predictive of changes in the pattern of BOLD in higher level areas. Likewise, the fact that the physical trial labels were extreme outliers
from the bootstrapped distributions in lower level areas indicated that even a slight perturbation of the precise retinotopic labeling of the trials
resulted in a dramatic decrease in the ability to predict changes in the pattern of BOLD response.
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Figure 6. Control analysis with eye tracking during scanning. (A) Position discrimination data for two additional subjects scanned on the same task
as in the main experiment, with eye tracking. Error bars represent ±1 SEM. The data are consistent with the results of the main experiment; the
position discrimination estimates from these subjects fell within the range of estimates acquired for subjects in the main experiment in each visual
area (most significant differences were MT+: zphysical = 1.81, p= .07 and PPA: zpercept = 0.87, p= .39, for physical and percept discrimination scores,
respectively). Discrimination of physical position hovered near zero for these subjects; this pattern is not atypical compared with the individual
subject data from the main experiment, although there were also subjects that showed substantial discrimination of physical position (see
Supplementary Figure 3). (B) Sample eye trace for one run from Subject 1a. The x position of gaze (sampled at 60 Hz) is plotted for the duration
of the run, and the presentation of the five position conditions is indicated behind the trace in shades of blue. The correlation between eye
position and the stimulus conditions for this run was r = .031, p = .86. The largest correlation for any run was r = .048, p = .78. The mean
stimulus position, indicated with gray dashed lines, was at ±6.4° from fixation. (C) Mean values for the x position (purple) and y position (green) are
shown for each of the five physical positions (left plots) and perceived positions (right plots) for the two control subjects. Eye position was not
correlated with the stimulus position or the responses made for either subject (see Results for statistics). There was also no correlation between
physical or perceived position and variability of eye position (see Results for statistics). (D) Collections of the recorded gaze positions corresponding
to each of the physical and perceived conditions for Subject 1a. The fixation point fell at position (0,0) in the center of each plot; the scatterplots
show the collected position measurements sampled during the presentation of each condition (physical plots on the left) as well as the collected
eye positions corresponding to each reported condition (percept plots on the right). The adjoining histograms show the x and y distributions
of recorded eye positions composing each scatterplot.
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et al., 1993). In the main experiment, our goal was to mea-
sure the precision of stimulus position information in the
pattern of BOLD response in each ROI. During scanning,
we presented flickering Gabor patches at five possible
eccentricities, ranging from 8.43° to 9.65° from fixation (Fig-
ure 1A). In each 10-sec block, the stimuli were presented
at one of the five eccentricities, and subjects reported their
apparent position in a 5AFC response. Seven subjects par-
ticipated in the main experiment.
Figure 1B shows behavioral performance: Subjectsʼ abil-

ity to discriminate between two different conditions (dis-
crimination sensitivity, d0) is plotted as a function of the
separation between the two eccentricities (for details on
calculating pairwise sensitivity, see MacMillan & Creelman,
2004). A one-way ANOVA across the five conditions at the
smallest (0.30°) separation showed no performance bias
for any particular stimulus eccentricity, F(4, 30) = 0.75;
p = .57. The positive trend in d0 for increasing stimulus
separation indicates that when subjects made errors, they
were most likely to mistake the presented condition for an
adjacent one. This tendency is also evident in Figure 1C,
which shows a histogram of subjectsʼ errors. Trials are
binned according to the difference between the subjectʼs
response and the correct response; the trials in bin 0 are
correct trials, and trials in positive bins are those in which
the subject perceived the stimulus as more eccentrically
positioned than it was presented. Subjects performed well
at determining the positions of the Gabors (∼58% correct;
chance is 20%), but the task was sufficiently difficult to
elicit a substantial number of errors. In the subsequent
data analysis, we focused exclusively on these “missed”
trials, in which subjects mislocalized the positions of the
stimuli to dissociate physical and perceived position.
Subjects also performed a secondary task to ensure that

they attended at the locations of the Gabors for the entirety
of each trial. During the first 8 sec of each trial, a small pat-
tern appeared at the centroid of one of the Gabors. At a
randomly chosen time during the final 2 sec of each trial,
a second pattern appeared in one of the Gabors; the sec-
ond pattern matched the first on half of the trials. At the
end of each trial, in addition to reporting the positions of
the Gabors, subjects indicated whether the two patterns
matched (Figure 1D shows an example trial). Performance
on this secondary task was 75.9% correct (chance was
50%). Subjectsʼ responses on the secondary task were not
correlated with their responses on the primary position
discrimination task, F(4, 1040) = 0.53; p = .72, nor were
they correlated with the physical positions of the stimuli,
F(4, 1040) = 0.25; p = .91. Because responses on the pri-
mary and secondary tasks were not correlated, subjects did
not use the patterns to judge the positions of the Gabor
stimuli. The below ceiling performance on this task in-
dicates that it was demanding enough to hold subjectsʼ at-
tention at the location of the Gabors for the duration of
each trial.
Within each ROI, we measured the selectivity for stimu-

lus position by tracking the change in the spatial pattern of

the BOLD response corresponding to the incremental
shifts in stimulus position (see Methods). We first dis-
carded the “hit” trials and kept only the “miss” trials for
the main analysis; by doing so, we focused on the subset of
the data in which there was a difference between the phys-
ical and the perceived locations of the stimuli (for the re-
sults of the same analysis when all trials are included, see
Figure 5 and Supplementary Figure 4). For each subject,
we produced five maps of BOLD response corresponding
to the five stimulus positions by separately contrasting
each condition against a fixation baseline in a general lin-
ear model. We then tested for a trend in the spatial pattern
of the BOLD response by measuring the similarity be-
tween pairs of maps. For any given pairing, we computed
the correlation between the two maps within the current
ROI (Figure 2A and B shows example correlations com-
puted for conditions separated by 0.30° and 1.22°, respec-
tively). Collecting the correlations from all 10 possible
pairings of the five maps, we plotted each correlation
against the spatial separation between the stimuli that pro-
duced it to construct a position discrimination plot (Fig-
ure 2C). An ROI that codes stimulus position will have a
strong negative trend in its position discrimination plot
because stimuli that are closer together in space produce
more highly overlapping patterns of BOLD response. In an
ROI that does not contain position information, on the
other hand, there is no reason to expect any trend in
the correlations on the position discrimination plot. Thus,
we used R, the goodness of fit of a linear regression ap-
plied to the data on the position discrimination plot, as
an index of the precision of position coding in each ROI.
The goodness-of-fit measure captures how tightly clus-
tered the correlations are at each separation as well as
the slope of the data, which indicates how dramatically
the pattern of BOLD changed with incremental changes
in position (see Methods). We took the Fisher z-transform
of each r value to linearize the scale of the precision esti-
mates so that they could be directly compared. We have
previously shown that this pattern analysis technique is
able to measure position selectivity in the BOLD response
on a submillimeter scale (Fischer & Whitney, 2009a, 2009b;
Bressler et al., 2007; Whitney & Bressler, 2007).

To test the precision with which each ROI codes per-
ceived rather than physical stimulus position, we con-
structed position discrimination plots in the same way, this
time using maps of BOLD response corresponding to the
five possible responses from the position discrimination
task. These maps, corresponding to the positions in which
subjects perceived the stimuli on a trial-by-trial basis, were
producedusing theexact same trials as in theanalysis ofphys-
ical position coding; the only difference was in how the trials
were coded in the GLM analysis (see Supplementary Fig-
ure 2). The resulting maps reflected activity corresponding
to perceiving the stimuli in the five different locations, re-
gardless of variations in the actual locations of the stimuli.
Because we used onlymissed trials, every trial was coded dif-
ferentlywhen codedby physical position versus the subjectʼs
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response. In this way, wewere able to dissociate physical and
perceived position and to separately measure the amount
of information about each in the BOLD response.

Figure 3 shows the results of the position discrimination
analysis for area LO (Figure 3A) and the other four higher
level areas we tested (Figure 3B). The position discrimi-
nation plots in Figure 3A show all subjectsʼ data plotted
together; to measure a group-level effect, we fitted a re-
gression to all subjectsʼ data and included a random effect
of subject in the regression model to account for between-
subject variability (Holmes & Friston, 1998; see Methods).
Precision of physical and perceived position coding is
plotted as −z, reflecting the fact that a strongly negative
linear fit to a position discrimination plot reflects precise
position coding. Every area we tested showed significant
discrimination of physical stimulus position ( p < .0001
for all areas). Strikingly, however, the coding of perceived
positionwas significantly more precise than coding of phys-
ical position in every area (red bars in Figure 3; see Table 1
for statistics). Consistent with our hypothesis, comparing
the relative precision of physical versus perceived position
coding within each area revealed a preferential represen-
tation of perceived position in these higher level visual
areas. Supplementary Figure 3 shows physical and per-
ceived position discrimination in the five higher level areas
from Figure 3, broken down by individual subject. With few
exceptions, individual subjects showed effects in the same
direction as in the group-level analysis. The fact that sub-
jects showed a consistent pattern of results, with higher
level visual areas more precisely reflecting perceived posi-
tion than physical position, speaks to the existence of an
underlying percept-centered coding scheme. Each subject
made a unique set of errors, and any alternative coding
scheme tied solely to the physical positions of the stimuli
would have been washed out in our analysis, in which a
given condition could be, at various times, reassigned to
any of the other four conditions.

In the main analysis, we used only unthresholded BOLD
response maps because nonsignificant voxels can still carry
precise stimulus information when analyzed as a multi-
variate pattern (Norman, Polyn, Detre, & Haxby, 2006).
We also tried the same analysis using thresholded BOLD
maps and found very similar results to those in the main
experiment (see Supplementary Figure 4).

The smallest and largest eccentricities define the end-
points of the continuum of possible responses, so we
wondered whether a dramatic difference between those
two conditions in the “percept” maps might be driving
the higher precision of perceived position coding, rela-
tive to physical position coding. We performed the po-
sition discrimination analysis again after removing the
correlations at the 1.22° separation, and we still found
stronger discrimination of perceived position than physi-
cal position in every higher level visual area (the least sig-
nificant difference was in the FFA: z = 2.06, p = .039).
We also measured the similarity of the physical and per-
ceived BOLD response maps within each of the five posi-

tion conditions to determine whether the most dramatic
changes resulting from recoding were isolated to any
particular condition(s). Correlating the physical and the
percept maps with each other in each ROI, we found no
difference across the five conditions for any ROI (most
significant was FFA), F(4, 170) = 0.96, p = .43. Thus, sys-
tematic differences between the patterns of BOLD corre-
sponding to physical and perceived position are present
across the whole continuum of stimulus positions.
In a follow-up analysis, we measured physical and per-

ceived position discrimination in early visual areas V1, V2,
V3, V3a, VP, and V4, which we functionally defined using
a standard retinotopic localizer (Supplementary Figure 1;
see Methods; Sereno et al., 1995). The collected data for
all visual areas, divided into the dorsal and ventral visual
streams, are presented in Figure 4. The within-area differ-
ence scores −(zpercept − zphysical), plotted below the raw
discrimination data, are the most informative indices of
the nature of position coding in each visual area because
they reveal the direction and the strength of the bias
within an area for encoding physical versus perceived po-
sition discrimination. It is important to note that due to
potential inhomogeneities in signal quality across the
brain, a comparison of position discrimination scores is
only informative within, and not between, visual areas
(see Discussion).
The data in Figure 4 reveal a trend in the nature of po-

sition representation: Although the higher level visual
areas we tested showed a strong preference for coding
perceived stimulus position, that effect is diminished or
reversed in earlier areas. A chi-square test revealed signifi-
cant heterogeneity in coding preference across both the
dorsal and the ventral stream areas (χ2

dorsal = 20.92, p =
.0003; χ2

ventral = 35.29, p< .0001). To test for a systematic
progression in the nature of position coding across areas,
we computed a nonparametric correlation (Spearman rho)
between the rank-ordered visual areas and their coding
preference −(zpercept − zphysical) scores. We assigned all
higher level areas the same rank (5), and we ranked the
earlier visual areas according to the order they are encoun-
tered moving anteriorly from V1 (for reference, we used
the inflated human cortex image from Figure 1 in Tootell
et al., 2003): V1− 1; V2− 2; V3 and VP− 3; V3a and V4−
4. The correlation was highly significant (ρ= .80; p= .003).
To evaluate this a priori ranking relative to all possible rank-
ings of the visual areas, we computed a 25,000-sample
bootstrapped distribution of rank correlations, with a ran-
domly drawn ranking of areas for each sample. The corre-
lation of .80 obtained with the a priori ranking was larger
in absolute value than 99.5% of the bootstrapped samples,
indicating that our ranking based on functional anatomy is
a good match to the independently measured position
discrimination estimates for each area. The strong correla-
tion between an areaʼs location in the visual processing
hierarchy and its position coding bias reinforces the idea
that the nature of position coding evolves as information
progresses through the visual processing hierarchy, becom-
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ing relatively more strongly tied to perception in higher
level areas. This is not to say that early visual areas contain
no information about perceived position but that percept-
centered information does not yet dominate position rep-
resentations at the earliest stages of visual processing.
Our results provide a clear answer to our underlying ques-
tion regarding the nature of position coding in higher level
areas: The location in which an object is perceived matters
more than the location in which it was presented.
If subjectsʼ errors had been random or not directly re-

lated to perceived position, could recoding the condition
labels according to those (uninformative) responses ever
yield a spurious improvement in the precision of position
coding measured by the correlation analysis? To evaluate
how uniquely predictive subjectsʼ actual responses were
relative to other possible ways in which the trials could
have been relabeled, we performed a bootstrapping anal-
ysis in which we repeated the correlation analysis for
each subject and each ROI 1000 times. On each iteration,
we added “errors” to the physical trials labels; the errors
were randomly drawn from the distribution of subjectsʼ
actual errors, such that over all iterations, the distribution
of simulated errors matched the distribution of actual er-
rors that subjects made (Figure 1C). For each ROI, we ran
the position discrimination analysis with the 1000 sets of
simulated trial labels and obtained a distribution of discrim-
ination values (Figure 5). Since the errors for each set of
trials labels were randomly drawn, the bootstrapped dis-
crimination values reflect the precision of position discrim-
ination we would expect to measure if subjectsʼ responses
reflected random errors. In Figure 5, the bootstrapped
discrimination values are shown in gray histograms, and
the discrimination measured with the actual physical and
percept trial labelings is indicated with blue and red bars,
respectively (these values differ slightly from those mea-
sured in the main experiment; here, we used all trials in
the analysis rather than only missed trials to allow for a
direct comparison of all iterations). In each of the higher
level visual areas, the discrimination measured with the
actual percept labels falls in the extreme upper tail of
the distribution of discrimination values for all possible
trial relabelings (least significant was pFs; −z = 3.41, p <
.001). The degree to which subjectsʼ responses outperform
other possible labelings is striking given that both the
percept labelings and the bootstrapped labelings had, on
average, 58% of their labels in common with the physical
coding; the only difference is the precise arrangement of
the errors. Thus, it is indeed critical to use the precise re-
sponses that subjectsmade to obtain the dramatic improve-
ment in the precision of position coding that we measured
in higher level areas.
The bootstrapping analysis also allowed us to further

disentangle the measurements of percept- and retina-
centered encoding. In an area dominated by retinotopic
coding such as V1, one might ask whether there is also
some degree of encoding of perceived position. In the
main experiment, we found significant discrimination of

the perceived stimulus positions in V1, but because sub-
jectsʼ responses were highly correlated with the physical
stimulus positions (Figure 1C), that measurement could
have been carried entirely by the underlying retinotopic
coding. However, the histograms in Figure 5 provide a
means of testing for a unique contribution of percept-
related information after taking into account the correlation
between the subjectsʼ responses and the physical stimulus
positions. If there was no unique percept information in
V1, then the discrimination of subjectsʼ responses (the
red bar) should fall near the center of the bootstrapped
distribution, indicating that labeling the trials according to
subjectsʼ responses is no better than using a random per-
turbation of the physical trial labels. In fact, while a percept-
based labeling scheme is substantially worse than a physical
labeling scheme at predicting the pattern of BOLD in V1,
it still falls 2.38 standard deviations ( p = .017) above what
would be expected by chance if there were no percept-
specific information in V1. Thus, there is some information
about perceived position encoded in V1, even after account-
ing for the correlation between the subjectsʼ responses
and the physical stimulus positions (the bootstrapped la-
bels were, on average, as strongly correlated with the phys-
ical labels as subjectsʼ responses were). Nonetheless, the
relative precision of retinotopic coding versus percept-
centered coding is stronger in V1 than in any other area we
measured.

A potential concern is that subjectsʼ eye movements
might have been correlated with either the physical or
the perceived stimulus positions, displacing the stimuli
on the retina in a systematic fashion. In fact, the main ex-
periment was designed specifically to factor out the impact
of eye movements: Because the same trials were used to
compare the relative precision of physical and perceived
position coding in every visual area, any effects of eye
movements would have had the same impact in every
ROI and could not have produced effects in opposite di-
rections as we found in higher level visual areas versus
early areas (Figure 4). Nonetheless, to test for a possible
correlation between eye movements and subjectsʼ re-
sponses, we conducted a control experiment in which
we tracked two subjectsʼ eye positions during scanning
(Figure 6). The position discrimination data from the con-
trol subjects were consistent with the results of the main
experiment (Figure 6A; see caption for stats). Figure 6B
shows a sample eye trace (sampled at 60 Hz) for one
run from Subject 1a, with the stimulus conditions for that
run indicated in shades of blue. The correlation between
the eye position and the stimulus conditions for this run
was r = .031, p = .86. The largest correlation for any run
was r = .048, p = .78. Figure 6C shows the mean x po-
sition (purple) and y position (green) of gaze during
each condition for both subjects. We performed one-way
ANOVAs for each of x position, y position, and variability
in gaze position, separately for the eye measurements
grouped by physical position and perceived position. In
neither subject was gaze position or variability related to the
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physical or perceived stimulus positions (Subject 1a:most sig-
nificant test was Fy_pos × percept = 1.00, p = .41; Subject 2a:
most significant test was Fvar× physical = 1.57, p= .18), indicat-
ing that subjects did not make eye movements of different
magnitudes or directions in the different conditions. Mean
position and variability are easily visualized in Figure 6D,
which show scatterplots of the recorded gaze positions for
each condition for Subject 1a. Together, these data show that
eye movements cannot account for our results.

Perhaps the faithful representation of retinal position
within a visual area depends on the presentation of its
preferred stimulus. To explore whether the preferential
coding of perceived position in higher level visual areas
is affected by stimulus type, we conducted an additional
control experiment in which we presented faces instead
of Gabors (Supplementary Figure 5a). The faces were en-
veloped in a Gaussian contrast profiles to define their
centroids, and they were updated in identity at 7.5 Hz.
In all other respects, the stimuli and the task were iden-
tical to those in the main experiment (see Methods). Two
subjects from the main experiment participated in this
control experiment so that we had data for both Gabor
stimuli and face stimuli for those subjects. We compared
the precision of physical and perceived position coding
within the FFA, for which faces are an optimal stimulus
(Kanwisher et al., 1997). Supplementary Figure 5b shows
the position discrimination scores measured indepen-
dently using Gabor stimuli and face stimuli. Of critical in-
terest is whether the perceived versus physical bias in the
FFA, given by −(zpercept − zphysical) (the green bars in
Supplementary Figure 5b), differed depending on stimu-
lus type. A z test on the two bias estimates revealed no
significant difference (z = 0.10, p = .92); in fact, the bias
estimates using the two different stimulus types were re-
markably similar. Notably, the overall selectivity for both
perceived and physical position was higher in the FFA for
faces than Gabors (this difference was borderline signifi-
cant: t = 11.90, p = .053). This suggests that while opti-
mizing the stimulus for a given visual area might improve
the overall precision of position discrimination there,
changes in stimulus type do not change the underlying
nature of position coding.

A final concern is that higher level visual areas may pos-
sess a representation of the digits used to make the 5AFC
position discrimination response. Because subjects made
two independent responses on each trial (a 5AFC position
discrimination on the right hand and a same/different tex-
ture discrimination on the left hand), we were able to test
for evidence of digit coding or response planning in each
ROI, independently of the main position discrimination
task. We applied the same correlation analysis as in the
main experiment after recoding the design matrix ac-
cording to subjectsʼ responses on the secondary (pattern
matching) task (Supplementary Figure 6). No ROI was able
to discriminate the digit used to make the secondary re-
sponse (Supplementary Figure 6a; most significant was
MT+; −z = 0.19, p = .24). More importantly, across vi-

sual areas, variation in the precision of digit coding was not
correlated with the degree of bias for encoding physical or
perceived position (Supplementary Figure 6b; r = .13, p =
.68). Thus, we can be confident that the percept-centered
position coding that we measured in higher level visual
areas is not simply due to encoding of response planning
or tactile input.

DISCUSSION

Our results reveal a precise representation of perceived
object position—a “perceptotopic” organization—in every
higher level visual area we tested. Although these areas
do carry some information about a stimulusʼs retinotopic
position, each carries significantly more information about
the location in which the stimulus is perceived. The re-
markable precision of perceived position coding that we
found in areas pFs, FFA, and PPA, in which position infor-
mation has previously been regarded as coarse at best
(Hemondet al., 2007;MacEvoy&Epstein, 2007;Grill-Spector
&Malach, 2001), suggests that it is critical to take into account
a subjectʼs perceptual experience—not just the stimulus
properties—whenmeasuring stimulus coding in higher level
visual areas.
It is important to have a concrete interpretation of what

it means to reassign the GLM predictors according to sub-
jectsʼ responses, as we did in the current analysis. Because
subjects reported the apparent positions of the stimuli,
there were effectively two distinct stimulus dimensions
that we could define as predictors in the GLM (see Sup-
plementary Figure 2). The first was physical object posi-
tion (given by the five possible stimulus eccentricities),
and the second was perceived object position (given by
the five possible responses). The resulting two sets of
BOLD maps revealed the variations in neural activity due
to changes in physical stimulus position and the variations
in activity due to changes in perceived position, respec-
tively. Because we included only the missed trials in our
primary analysis, each trial had a different value on the
perceived and physical dimensions, which provided the
maximum possible independence between the two dimen-
sions of interest. Similar techniques investigating “miss”
trials are not uncommon in, for example, memory research
(Henson, Hornberger, & Rugg, 2005; Eldridge, Knowlton,
Furmanski, Bookheimer, & Engel, 2000). Subsequent anal-
yses showed that including all trials (not just missed trials)
yields the same evolution of position coding from retina
centered to percept centered (Figure 5).
An assumption of our analysis is that subjectsʼ incor-

rect responses actually reflect the perceived stimulus po-
sition on a trial-by-trial basis rather than simply reflecting
errors in motor execution or random guesses (lapses). Al-
though lapses undoubtedly resulted in some missed tri-
als, if missed trials reflected only noise, then modeling
that noise would have driven the position discrimination
slopes toward zero rather than producing the dramatic im-
provements that we found in higher level areas. Indeed,
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the bootstrapping analysis presented in Figure 5 showed
that in every higher level visual area we tested, subjectsʼ
actual responses were far better at predicting changes in
the BOLD than in the random responses that were equally
well correlated with the physical positions of the stimuli.
Moreover, within each subject, we used the same set of
five “percept” activity maps to test position discrimination
in every ROI. Any influence of errors and guessing would
be uniform across all of the areas we tested and could not
account for the opposite effects that we found in control
(early) areas versus higher level areas.
How do we know that some other, nonretinotopic co-

ordinate frame does not better account for the results
presented here? Could it be that object, face, and place
regions code position information in saccade-centered,
head-centered, world-centered, or some other physically
defined coordinate frame? We can rule out any single phys-
ically defined coordinate frame because all of the precision
improvements that we found in our perceived position
analysis were driven by missed trials, in which subjects
misperceived the stimulus location. Despite this, there
was improved systematic coding in every high-level ROI
we tested—objects perceived to be located in the same
position, regardless of where they were physically located,
produced the most similar patterns of activity. As noted
above, perceived position coding must incorporate a com-
bination of many coordinate frames.
Although the activity we measured in primary visual

cortex (V1) was strongly tied to the retinal positions of
the stimuli, we found that there was also some unique
information about perceived position represented there
(Figure 5). This is consistent with the results of a recent
study by Murray, Boyaci, and Kersten (2006), which in-
vestigated the influence of perceived object size on rep-
resentations in V1. The authors presented a stimulus of
constant retinal size, but they manipulated its perceived
size by changing the apparent depth of the object with
contextual cues. They found that when the object was per-
ceived as being larger, it activated a larger region of cortex
in V1; the pattern of activation was similar to that observed
for a physical increase in stimulus size. It is not yet possi-
ble to say whether the information about perceived size in
V1 shown by Murray et al. (2006) and the information
about perceived position in V1 found in the present study
reflect feedback input from higher level areas that possess
strong percept-centered coding or whether some prelim-
inary percept-related information is computed in V1 itself.
Although these findings and others (Tong, 2003) show that
even V1 cannot be said to be strictly retinotopic, in our pres-
ent results, activity in V1 encoded retinal position much
more precisely than perceived position (Figure 5), and
there was a steady accumulation of percept-centered infor-
mation at higher stages in the visual processing hierarchy.
Consistent with the general principle that the receptive

fields of individual neurons increase in size at successive
stages of visual processing (Desimone & Duncan, 1995),
we found steadily decreasing precision of physical posi-

tion coding as we ascended the visual processing hier-
archy. Could the superior coding of perceived stimulus
position that we measured in higher level areas simply
be a result of coarser retinotopic maps? We would actu-
ally expect just the opposite: the capacity for coding per-
ceived position should also be degraded by increasing RF
size, unless there are additional sources of information
present that are contributing to perceived position coding.
Our results show that the precision of retinotopic coding
does not reflect an absolute limitation on the capacity of
an area for carrying position information. higher level
areas can clearly support more precise position discrimina-
tion than is revealed by measuring retinotopic coding,
when measured along the perceived position dimension,
which incorporates additional information sources. In this
sense, measuring physical position coding (e.g., retino-
topy) only taps into a portion of the potential capacity
for position information in higher level areas. This fact is
most apparent in Figure 5: Although there is very little
unique retinotopic information in higher level visual areas,
there is substantial information about perceived position.

Higher level visual areas are, in general, more strongly
modulated by attention (Maunsell, 2004). Could the pat-
tern of results that we found be due to attentional influ-
ences that manifest at higher levels? As highlighted in the
introduction, attention is indeed one of the factors that
can displace an objectʼs perceived position from its retinal
position (Suzuki & Cavanagh, 1997), so we would expect
attentional influences to contribute to the construction of
a percept-centered framework. However, because we
used the exact same trials to measure perceived versus
physical position coding in our experiment, the influence
of attention on the BOLD was the same for each analysis.
As with the host of factors that contribute to perceived po-
sition, attention could only contribute to a difference be-
tween perceived and physical coding in our analysis by
virtue of modulating the BOLD in a manner that is corre-
lated with perceived rather than physical stimulus posi-
tion. The combined influence of such factors is exactly
what we aimed to measure in higher level visual areas.

The position discrimination analysis is designed to char-
acterize the nature of position coding within a given ROI.
For a single ROI, factors such as number of voxels, signal
strength, scanner noise, and motion artifacts are held con-
stant across the physical and the percept analyses, so the
comparison of physical and perceived position coding re-
flects only the difference in how the GLM predictors were
coded. Across ROIs, those factors confound direct preci-
sion comparisons. For this reason, we focused on the rel-
ative precisions of perceived and physical coding within
each visual area to show differences in the underlying nat-
ure of position coding across the visual processing hierar-
chy. Similarly, on an absolute scale, V1 showed more
precise coding of perceived position than did any higher
level area. However, the bootstrapped distribution in Fig-
ure 5 shows that we would expect strong discrimination of
perceived position in V1 based solely on the combination
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of precise retinotopy and the correlation between sub-
jectsʼ responses and the physical stimulus positions (Fig-
ure 1). By considering the relative precision of physical
versus percept coding (−(zpercept − zphysical)), it becomes
clear that coding in V1 is strongly biased toward retinal po-
sition, whereas coding in higher level areas is dominated
by percept information.

The cross-correlation analysis that we used in this study
is a simple yet powerful way to measure stimulus discrimi-
nation within an ROI. Recently, a number of studies have
demonstrated the promise of multivariate pattern analyses
in detecting stimulus discrimination in the BOLD response
(Bressler et al., 2007; Haynes & Rees, 2005; Kamitani &
Tong, 2005; Carlson, Schrater, & He, 2003; Haxby et al.,
2001). Although the sensitivity of all of these approaches
derives from their multivariate nature, our correlation anal-
ysis is particularly well suited to studying position discrimi-
nation because it allows us to track systematic changes in
the BOLD response corresponding to incremental, para-
metric manipulations of the stimulus location. When the
correlation analysis yields a significant position discrimina-
tion fit within an ROI, it implies not only that different
stimulus positions produced detectably different patterns
of activity in that ROI but also that the similarity of the
activity patterns was dependent on the similarity of the un-
derlying stimuli. The analysis is sensitive to information
encoded in complex coordinate frames, but it requires to-
pography, not just different responses to different stimuli.

The perceived location of an object depends on many
factors. For example, eyemovements, gaze direction, scene
andobjectmotion, visual reference frames, and attention all
influence perceived position (Dassonville, Bridgeman, Kaur
Bala, Thiem, & Sampanes, 2004; Nijhawan, 2002; Schlag &
Schlag-Rey, 2002;Whitney, 2002; Ross et al., 1997; Suzuki &
Cavanagh, 1997; Matin et al., 1982). Thus, percept-centered
mapping in the visual cortex reflects the accumulation of a
copious array of retinal and extraretinal information. In this
study, we measured the aggregate information about per-
ceived position in each ROI, but we cannot yet say whether
such percept information was supported by a single, highly
complex percept-based topographic map or the coexis-
tence ofmanymaps registered to each other but supported
by distinct subpopulations of neurons. Complex spatial rep-
resentations that reflect multiple coordinate frames have
been found in parietal and motor cortex (Graziano, 2006;
Graziano&Gross, 1998; Andersen, Snyder, Bradley,&Xing,
1997). Our results, demonstrating that position coding in
higher level visual areas adapts to reflect an objectʼs per-
ceived position on a trial-by-trial basis, show that a similarly
nuanced picture of multiplexed spatial maps is necessary to
understand how object position is computed and encoded
in the human visual system.

Reprint requests should be sent to Jason Fischer, The Center
for Mind and Brain and Department of Psychology, University of
California, Davis, CA 95618, or via e-mail: jtfischer@ucdavis.edu.
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